Potent inhibition of anoxic depolarization by the sodium channel blocker dibucaine.
نویسندگان
چکیده
Recurring waves of peri-infarct depolarizations (PIDs) propagate across gray matter in the hours and days following stroke, expanding the primary site of injury. Ischemic depolarization (termed anoxic depolarization or AD in live brain slices) is PID-like but immediately arises in the more metabolically compromised ischemic core. This causes dramatic neuronal and astrocyte swelling and dendritic beading with spine loss within minutes, resulting in acute cell death. AD is evoked in rodent neocortical slices by suppressing the Na(+)/K(+)-ATPase pump with either oxygen/glucose deprivation (OGD) or exposure to ouabain. The process driving AD and PIDs remains poorly understood. Here we show that dibucaine is a potent drug inhibiting AD because of its high binding affinity to the Na(+) channel. Field recording reveals that, when superfused with ouabain (5 min), neocortical slices pretreated with 1 μM dibucaine for 45 min display either no AD or delayed AD onset compared with untreated controls. If ouabain exposure is extended to 10 min, 1 μM dibucaine is still able to delay AD onset by ∼ 60%. Likewise, it delays OGD-evoked AD onset by ∼ 54% but does not depress action potentials (APs) or evoked orthodromic field potentials. Increasing dibucaine to 10 μM inhibits AP firing, gradually putting the slice into a stasis that inhibits AD onset but also renders the slice functionally quiescent. Two-photon microscopy reveals that 10 μM dibucaine pretreatment prevents or helps reverse ouabain-induced structural neuronal damage. Although the therapeutic range of dibucaine is quite narrow, dibucaine-like drugs could prove therapeutically useful in inhibiting PIDs and their resultant neuronal damage.
منابع مشابه
Dibucaine Mitigates Spreading Depolarization in Human Neocortical Slices and Prevents Acute Dendritic Injury in the Ischemic Rodent Neocortex
BACKGROUND Spreading depolarizations that occur in patients with malignant stroke, subarachnoid/intracranial hemorrhage, and traumatic brain injury are known to facilitate neuronal damage in metabolically compromised brain tissue. The dramatic failure of brain ion homeostasis caused by propagating spreading depolarizations results in neuronal and astroglial swelling. In essence, swelling is the...
متن کاملRole for adenosine in channel arrest in the anoxic turtle brain.
The remarkable ability of the turtle brain to survive anoxia is based on its ability to match energy demand flexibly to energy production. Earlier studies indicate that reduced ion leakage is an important mechanism for energy conservation during anoxia. We tested the hypothesis that extracellular adenosine plays a role in the reduction of K+ flux (channel arrest) that occurs in the anoxic turtl...
متن کاملThe effect of nifedipine and baclofen on spinal anesthesia induced by local anesthetics
The primary mode of action of local anesthetics is through sodium channel and axonal conduction blockade. Local anesthetics have also extensive effects on pre-synaptic calcium channels that must function to stimulate the release of neurotransmitters. Thus, interference with calcium channel conductance may enhance spinal anesthesia with local anesthetics. The present study was designed to invest...
متن کاملThe effect of nifedipine and baclofen on spinal anesthesia induced by local anesthetics
The primary mode of action of local anesthetics is through sodium channel and axonal conduction blockade. Local anesthetics have also extensive effects on pre-synaptic calcium channels that must function to stimulate the release of neurotransmitters. Thus, interference with calcium channel conductance may enhance spinal anesthesia with local anesthetics. The present study was designed to invest...
متن کاملExamining protection from anoxic depolarization by the drugs dibucaine and 2 carbetapentane using whole - cell recording from CA 1 neurons 3 4 Sean
28 As an immediate consequence of stroke onset, failure of the Na/KATPase pump evokes a 29 propagating anoxic depolarization (AD) across gray matter. Acute neuronal swelling and dendritic 30 beading arise within seconds in the future ischemic core, imaged as changes in light transmittance (ΔLT). 31 AD is itself not a target for drug-based reduction of stroke injury because it is generated in th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 105 4 شماره
صفحات -
تاریخ انتشار 2011